

S-VTX

FLOW TOTALIZER TYPE 6600

Operating manual

LCD flow integrating control instrument (supporting type) Operation Instruction

I. Introduction

LCD flow totalizer is mainly designed for trading discipline between supplier and customer in regional central heating, and calculating steam, and high precision flow measurement. It's a full-functional secondary instrument based on 32-bit ARM micro-processor, high-speed AD and large-capacity storage. The instrument has fully adopted surface-mount technology. It has good EMC ability and high reliability because of heavy protection and isolation in design. It is embedded RTOS, USB Host, and high-density FLASH memory, which can record 720-day length sampling data. It can automatically identify saturated steam and superheated steam. It can also be used for process monitoring and volume control of steam heat. History data recorded in instrument can be copied to USB disk at any time and analyzed by DTM software on PC. The instrument may be used together with vary flow sensors such as Orifice Plate, V-cone, vortex, and so on. Besides, it also features good performance in anti-theft and power failure protection.

II. Technical Parameters

Measurement input						
Input signal	Current	: 0-20mA, 0-10mA, 4-20mA, √0-10mA, √4-20mA				
	Input impedance: ≤100Ω					
	Maximu	Maximum limit of input current: ≤ 30mA				
	Voltage	/oltage: 0-5V, 1-5V, 0-10V (customized), √0-5V, √1-5V, 0-20mV, 0-100mV				
	Input im	npedance: ≥ 500KΩ				
	Therma	I resistance: Pt100, Cu50, Cu53, Cu100, BA1, BA2				
	Linear r	resistance: 0-400Ω				
	Thermo	couple: B, S, K, E, T, J, R, N, F2, Wre3-25, Wre5-26				
	Freque	ncy signal: range: 0-10KHz; wave shape: rectangular, sine wave, square wave				
Output						
Output signal	Analog	output: 4-20mA (load resistance \leq 480 Ω), 0-20mA (load resistance \leq 480 Ω)				
	0-10mA (load resistance \leq 960 Ω), 1-5V (load resistance \geq 250K Ω)					
	0-5V (load resistance \geq 250K Ω), 0-10V (load resistance \geq 4K Ω) (customized)					
	Alarm output: relay control output: AC220V/2A, DC24V/2A (resistive load)					
	Feed ou	Feed output: DC24V±1, load current ≤ 50mA				
	Communication output: RS485/RS232, 1200-9600bps, Protocol: MODBUS RTU. Co					
	distance	e: 1Km for RS-485 and 15m for RS-232.				
Comprehensive	paramet	ers				
Measurement p	recision	0.2%FS±1d				
Setting mode		Light touch control panel for setting parameter, which will be stored permanently even in case of				
		power failure, and can be locked & protected with password.				
Display mode		3.5" matrix 128*64 LCD screen with backlight (black characters on white screen).				
		Display pages include Digits, Curves, Bar graphs, and so on. Pages switch conveniently on the				
		panel. History data can be searched, and time scale of curves is changed by operating proper				
		keys on the panel.				
Record interval		9 options for your choice: 1s, 2s, 4s, 6s, 15s, 30s, 60s, 120s, and 240s				
Storage time		3 days (record interval of 1s) – 720 days (record interval of 240s)				

Print	Printer interface: RS-232C; Serial-interface printer: SP-A40SH
Operating environment	Ambient temperature: 0-50 °C; relative humidity: ≤ 85RH; isolated from strongly corrosive gas
Power supply	AC 100-240V (switch power), 50/60HZ; DC 20-29V (switch power)
Power consumption	≤ 5W
Structure	- Standard panel mounted instrument structure

III. Installation

1. Installation position and environment

The instrument shall be installed away from motors and transformers to avoid impact, shock, and electromagnetic interference. Keep it horizontal during installation. The ambient temperature of the installation site shall be between 0° C and 50° C, and the relative humidity shall not exceed 85%RH, where there're no condensate, corrosive gas, and combustible gas.

2. Dimension (mm)

	Dimension			Hole Size		Minimum Distance Between Instruments	
Туре	Width	Height	Depth	Х	Y	W	Н
А	160	80	110	152+0.5	76+0.5	38	34
В	80	160	110	76+0.5	152+0.5	34	38
С	96	96	110	92+0.5	92+0.5	38	38

3. Installation

(1) Installing the instrument on mounting panel

Drill installation holes of proper size according to the instrument requirements and put the seal ring on the back of instrument. Then insert the instrument right to the installation hole and install the attaching clamps to back of the board to fix top and bottom surface of the instrument and push two clamps forward so that the instrument could be fixed on the board. Take the protective film off the screen. (If multiple instruments would be installed on one board, minimum distance between instruments as specified in table above shall be considered to ensure adequate heat dissipation and space for installation.)

(2) How to take the core out of enclosure

Core of the instrument may be taken out of the enclosure. Push aside two buckles on each side of

the front panel, and pull front panel outward to separate the core and enclosure. When reassembly, insert core into the enclosure tightly and fasten them with buckles for reliability.

(3) Installation instructions

★ Cable selection, instrument installation, and electrical wiring must comply with VD0100 "Relevant Rules on Circuit Installation under 1,000V" or relevant local rules;

★ Electrical wiring must be completed by professionals;

★ Fuse shall be used in load circuit to protect the circuit and ensure that the relay contact will be open in the case of short circuit or load exceeding the maximum capacity of relay;

 \bigstar Separate wiring shall be made for input, output, and power supply respectively and parallelism shall be avoided;

★ No other load shall be connected to the power terminal of the instrument;

 \star Shielded twisted wires shall be used for sensor and communication.

(4) Standard wiring instructions

★ DC signal input (process input)

1. In order to reduce electrical interference, wires carrying low-voltage DC signals and sensors input shall be far away from high-voltage-bearing wires. If not, shielded wires shall be used and grounded at the same point;

2. Any device connected between sensors and terminals may influence measurement accuracy due to resistance or current leakage.

★ Thermocouple or pyrometer input

Compensating lead wires appropriate to the thermocouple shall be used as extension wires, which must be shielded.

★ RTD (thermal resistance) input

The resistance of three wires must be the same and shall not exceed 15Ω each.

(5) Wiring diagram

Wiring Diagram of no compensation flow

Note: in the above diagram, if one group of terminals has different functions, only one of them may be available.

For example, RS485 and RS232 are on the same group of terminals, so only one of them may be selected.

Wiring Diagram of with compensation flow

Note: in the above diagram, if one group of terminals has different functions, only one of them may be available.

For example, RS485 and RS232 are on the same group of terminals, so only one of them may be selected.

The wiring terminal directions at rear cover of horizontal and vertical instruments are different; see Figure 1.

IV. Parameters Setting

1. Panel configuration

٦

Menu page: to confirm item selection on the menu Parameter change: to confirm new set parameter	
Parameter change: to confirm new set parameter	
Curve display: to enter configuration page combined with "A" key	
Enter Historical data display: to confirm the retrospective time to be modified in the ne	ext step; to clear
cumulant and cumulative power-failure duration combined with "◄" key	
Parameter setting: to move position of decimal point combined with "	
Menu page: to move the cursor down	
 Parameter change: to decrease the number before the cursor 	
Down Measured value display: to turn display pages of the same channel	
Retrospective time change: to decrease time value before the cursor	
Menu page: to move the cursor up	
Parameter change: to increase the number before the cursor	
Operation Retrospective time change: to increase time value before the cursor	
keys Menu page: to move the cursor left	
Parameter change: to move the cursor left	
Retrospective time change: to move the cursor left	
Historical data display: to search historical data backward from current time, or to	stop the forward
search of historical data	
Menu page: to move the cursor right	
Parameter change: to move the cursor right	
Retrospective time change: to move the cursor right	
Historical data display: to search historical data forward from current time, or to st	op the backward
search of historical data	
Measured value display: to switch display between different channels	
End of setting: to enter measured value display	
F2 Real-time curve or historical curve display: to change time scale of curve display	

2. Operation

Γ

1) Power-on

Turn on the instrument while ensuring it's properly wired. The system would take several seconds or minutes for initialization. Please wait a moment.

2) Unlocking

Press "▲" and "▼" to change the target parameter For example, "Input type 4-20mA"

Press " " to save the new parameter

Press " $\mathbf{\nabla}$ " to enter filter coefficient setting and go through the above process. Setting of other parameters is the same as above.

Upon completion, press "m" to return to configuration page. Press "▲", "▼", "▶", and "◀" to set parameters of next item.

4) Display operation

a. Flow chart

	+		
	DP 10.0 KPa TEMP 180.0 C	Mainm	accourament dianlay
	PRES 1.00 MPa	Main n	leasurement display
	InsF 1000.823 Kg/h		
			
	InsF 1000.823 Kg/h		
	Σ1 3000.823 Kg		
	InsH 250.823 MJ/h	Press	"mo" to switch to instantaneous cumulation display
	Σ1 4000.800 MJ		
	└─── ↓		
	Parameter p:0.0173 h:2537.46 Red:0.000 C:0.000 ε:1.000 K:1.325 µ:9.727 d:30.000 D:50.000 β:0.600	Press	"m" to switch to intermediate parameters display
	2012/02/27		
	STEAL 19 2013/03/27 POFF 05-7880S		
	InsF 1000.823 Kg/h	Press	"m" to switch to power-failure memory display
	Σ 3000.823 Kg		
			
	 13/03/27 09:27:22 ↑ 13/03/27 09:27:48 13/03/27 10:24:48 13/03/27 10:31:22 13/03/27 10:31:48 13/03/27 11:27:17 13/03/27 13:40:48 	Press	"m" to switch to power-failure time display
	HOUR 13-03-27 15 FLOW 03-27 15: 1.55 03-27 16: 3.00 03-27 17: 4.45 03-27 18: 6.25 03-27 19: 8.05 03-27 20: 10.55	Press	"" to switch to hourly report display
	CLAS 13-03-27 FLOW▲ 13-03-27: 1.55 3.00 4.45 13-03-28: 6.25 8.05 10.55	Press	"no" to switch to shift report display
	•		
	DAY 13-03-27 FLOW A		
	13-03-27: 1.55 13-03-28: 3.00 13-03-29: 4.45 13-03-30: 6.25 13-03-31: 8.05 13-04-01: 10.55	Press	"m" to switch to daily report display
	MONTH 2013-03 FLOW		
	2013-03: 201.55 2013-04: 203.00 2013-05: 204.45 2013-06: 206.25 2013-07: 208.05 2013-08: 210.55	Press	" to switch to monthly report display
_			

b. Instructions for each display:

① Parameters display:

There are 2 pages for flow and relevant parameters, including temperature compensation value, pressure compensation value, differential pressure or flow channel measured value, instantaneous flow, instantaneous heat, cumulative flow of each channel, totalized heat, balance, and residue.

User may use "System" configuration to set items displayed in "Page 1" and "Page 2" and define their orders.

Page 1

Press "F1" to switch to instantaneous cumulation display

- 2 Press "F1" again to switch to intermediate parameters display:
 - p: 1.2045 density in operating condition (Kg/m³)
 - C: 0.605 discharge coefficient
 - Red: 88346.393 Reynolds number
 - ε: 1.000 expansion coefficient of measured medium
 - h: 238.93 enthalpy of measured medium (note: appearing if heat totalizing function is activated)
 - μ : 19.550 dynamic viscosity of measured medium (10⁻⁶ Pa.s)
 - κ: 1.402 isentropic exponent of measured medium
 - β : 0.600 diameter ratio of throttling device
 - d: 30.000 interior diameter of open hole of throttling device (mm)
 - D: 50.000 diameter of tube of throttling device (mm)
 - Z: 0.999 compressibility factor of inorganic or organic gas
 - K: 1.000 instrument factor

③ Press "F1" again to switch to power-failure memory display:

It will display time (year, month, date, hour, minute, and second) of last power failure, times of power failure and total failure duration (in seconds), and instantaneous flow and cumulative flow at the time of last power failure.

④ Press "F1" again to switch to power failure time display:

The following will be displayed only when "Power-failure Time" in "System" configuration is set as "ON". It will display the actual time of power failure and power-on during operation, and can display 8 moments of recent power-failure/on in one page.

As seen below, line started with "o" means power failure record, while line started with "•" means power-on record. Other records may be checked by using left and right key for page turning.

	Date of power-failure/on	Time of power-failure/on	
	•	•	
0	2010/02/15	08: 37: 53 ↑	
•	2010/02/15	09: 38: 53	
0	2010/02/20	23: 19: 20	
•	2010/02/21	00: 01: 31	
0	2010/02/22	07: 43: 22	
•	2010/02/23	14: 52: 17	
0	2010/02/25	17: 16: 16	
•	2010/02/27	22: 10: 10 ↓	

⑤ Press "F1" again to switch to hourly report display:

Hourly report is used to compile statistics of cumulative flow in every hour within one day, and reports may be checked by setting certain date and time. In case of steam or water measurement, heat report can also be checked.

	Report Date	Rep	ort Hour	Flow/Heat
	•		•	*
<u>HOL</u>	J R 10-0	8-23	10	FLOW
08-23	10:		1	234. 7
08-23	11:		1	233.9
08-23	12:		1	230. 5
08-23	13:			144.8
08-23	14:			234.6
08-23	15:			859.7

⑥ Press "F1" again to switch to shift report display:

Shift report is used to compile statistics of cumulative flow of some shift within one day, and 3 shift reports at maximum may be made in one day. Reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.

	Report Date	Flow/Heat
	\	\
<u>CLAS</u>	10-08-23	FLOW
10-08-2	23	378.7
		390.9
		330. 5
10-08-2	24	144.8
		234.6
		859.7

⑦ Press "F1" again to switch to daily report display:

Daily report is used to compile statistics of cumulative flow of current day, and reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.

Report Date	Flow/Heat
DAY 10-08-19	FLOW
10-08-19	1234. 7
10-08-20 10-08-21	1233. 9 1230. 5
10-08-22 10-08-23	144. 8 234 6
10-08-24	859.7

(a) Press "F1" again to switch to monthly report display:

Monthly report is used to compile statistics of cumulative flow of current month, and reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.

Report N	Aonth	Flow/Heat
MONTH	2010-07	FLOW
2010-07		1234. 7
2010-08		1233. 9
2010-09		1230. 5
2010-10		144.8
2010-11		234.6
2010-12		859.7

- c. Instructions for display of dynamic measurement process:
- 1) Real-time curve display

02:08

1: Time scale (m) indicates that the screen shows the curve for a length of 2 minutes and 8 seconds.

If it shows $\binom{02:08}{(h)}$, then it indicates that the screen shows the curve for a length of 2 hours and 8 minutes.

If the recording interval is higher than 15 seconds, the unit of time scale will automatically switch from (m) to (h).

2: Press " III " to alternate time scale units to expand or shorten the length of historical data curve.

3: Rule-indicating percentage will change with fluctuation of process curve to give the best display performance under limited resolution.

4: Measurement subject and channel name is defined with value of "Channel 1 name", "Channel 2 name", "Channel 3 name", and "Channel 4" name in "System" configuration.

5: Press "mo" in real-time curve display to switch to real-time curve display of flow (differential pressure), temperature, and pressure.

2) Real-time data measurement display

Press "****" to switch from real-time curve display to measurement display

Press F1 again to show the alarm bar graph below:

1: Alarm 1, 2, 3, 4, 5, or 6 above may be defined to correspond to any input channel (channel 1, 2, 3, or 4) based on user's needs, and alarm at upper limit or lower limit may be set.

2: ● means the relay operates (alarm)

○ means the relay does not operate (no alarm)

3: Press " m " in the alarm bar graph to switch to alarm bar graph of flow (differential pressure), temperature, and pressure.

3) Retrospective display

Press "****" to switch from real-time data measurement to historical data retrospective display

Note: instructions on historical data retrospective operation: (when the image above is displayed) (1) Press " >" to search historical data forward from current display and press " < " to stop the search. Press " < " to search historical data backward from current display and press " >" to stop the search.

(2) Press " I o change time scale to expand or shorten the length of historical data curve.

(3) Press " *O*" to return the cursor to time display area on the right above corner, and press " *◄*" and " *▶*" to move the cursor and press " *▲*" and " *▼*" to increase/decrease value of year, month, date, hour, minute, and second. Press " *O*" again for confirmation, and historical data curve of selected time will be shown on the screen.

(4) Relation between historical curve and historical data: the historical data will be at the intersection of historical curve and right frame of screen.

(5) Press "m" in the historical data retrospective display image to alternate between flow (differential pressure), temperature, and pressure.

Note: flow clearing

a. Press "*O*," and "**A**" to enter unlocking password setting in configuration page.

5. 1 doomordo may 50 000 do 10		
User sets system passwords	****	Preset as 00
Supplier and customer password	Cumulative flow, cumulative heat, and	Upon setting of passwords
= ****** + 1	times and time of power failure	(for example, when the
	clearing allowed	initial password is 100132,
Supplier and customer password	Power failure times and time clearing	values will be cleared when
= ****** + 2	allowed	entering password 100133),
Supplier and customer password	Cumulative flow and cumulative heat	press " 💷 " to return to
= ****** + 3	in channel 1 clearing allowed	measurement display, and
Supplier and customer password	Cumulative flow in channel 2 clearing	press " 🕐 " and " ◀ " for
= ****** + 4	allowed	clearing.
Supplier and customer password	Cumulative flow in channel 3 clearing	
= ****** + 5	allowed	
Supplier and customer password	Cumulative flow in channel 4 clearing	
= ***** + 6	allowed	

b. Passwords may be set as follows:

4) Data printing display (available when printer function is activated)

Press "**V**" to switch from data backup display to data printing

1. Manual printing

1) When the printer in system configuration is set as "AS", it will print the data or curve of current channel within the set time length; use " \blacktriangleleft " and " \blacktriangleright ", " \blacktriangle " and " \blacktriangledown " to change value of time, type, and channel; after that, move the cursor to "Print" and press " \bigcirc " for confirmation, and the screen will display "printing", indicating that it starts to print data or curves.

2) When the printer in system configuration is set as "TS", it will print data of all channels at current time; use " \blacktriangleleft " and " \blacktriangleright ", " \blacktriangle " and " \blacktriangledown " to change value of time, type, and channel, and set the type as "Data"; after that, move the cursor to "Print" and press "O" for confirmation, and the screen will display "printing", indicating that it starts to print data. Format of printing:

----- measured value at the time of starting

Alarm: \bullet 0 0 0 0 0 \bullet Alarm status: 0: no alarm \bullet : alar	m
Σ = 0.053MJCumulative heat	
Instantaneous heat: 0.0000MJ/hInstantaneous heat	
∑= 0.021KgCumulative flow	
Instantaneous: 15.0056Kg/hInstantaneous flow	
Pressure: 1.000MpaMeasured pressure	
Temperature: 50.0 °CMeasured temperature	
Differential pressure: 10.0KpaMeasured differential pressure	
Time: 10-07-12 15-00-02Date and time	

2. Timed printing

100724142601: 875

Set interval of timed printing in system configuration; when the interval of measurement equals to interval of time printing, it will automatically control the printer for timed printing (see format of printing above).

3. Alarm printing

When the alarm function is actuated in system configuration, in case of any alarm, it will automatically control the printer for alarm printing (see format of printing above).

Connection between instrument and serial-interface printer:

Note: baud rate of the instrument and printer must be the same (baud rate setting of the instrument could be referred to in Level 2 Parameters Setting and that of the printer could be referred to in printer instructions).

VI. Voltage Range Regulation in Frequency Input

1): With open collector, the input end has a voltage of 10V; with open emitter, there's no voltage;

	Frequency input: OC	Frequency input: OE
JP2 status	1 3	

Voltage regulation:

1. Regulate upper limit of input voltage: regulate potentiometer W1 (clockwise rotation for decrease and counterclockwise rotation for increase) so that voltage at negative end of frequency input of pin pair 7 of LM339 is not more than upper limit of input voltage.

2. Regulate lower limit of input voltage: regulate potentiometer W2 (clockwise rotation for decrease and counterclockwise rotation for increase) so that voltage at negative end of frequency input of pin pair 8 of LM339 is not less than lower limit of input voltage.

★ Regulate W1 and W2 to keep the amplitude of upper limit / lower limit of voltage is within the range of wave shape. The voltage is preset as about 2.5V and 4.5V for lower limit and upper limit amplitude.

2): Frequency amplification (see figure below):

. requeries ampin		
	Amplified voltage input (CP)	Normal voltage input (PP)
JP1 status	1 3	

 \star For example, the frequency amplitude of magnetoelectric transducer is relatively low, which cannot be directly collected by the instrument, so amplification circuit is required in the instrument.

V. Parameters Description

1) "SIG" parameters – when flow with temperature/pressure compensation is calculated, input channel 01 means flow (differential pressure) signal, 02 means temperature signal, and 03 means pressure signal.

Name	Range	Description	Default Value	
INPUT	01	The first input channel (unchangeable)	01	
TYPE	See table of input types	Input signal type (see table of input signal types)	4-20mA	
UNIT	See table of units	Engineering unit of input channel (see Note 1)	KPa	
FILTER	0-19	Set the input signal filter coefficient	0	
1.014/	0000 00000	Lower limit of measuring range	0	
LOW	-9999 ~ 99999	(see Note 2 for decimal digit setting)	0	
	0000 00000	Higher limit of measuring range	1000	
HIGH	-9999 ~ 99999	(see Note 2 for decimal digit setting)	1000	
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0	
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1000	
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0	
CUMULATE	ON	Flow value is cumulated	ON	
INPUT	02	The second input channel (unchangeable)	02	
TYPE	See table of input types	Input signal type (see table of input signal types)	PT100	
UNIT	See table of units	Engineering unit of input channel (see Note 1)	°C	
FILTER	0-19	Set the input signal filter coefficient	0	
	-9999 ~ 99999	Lower limit of measuring range	0	
LOW		(see Note 2 for decimal digit setting)		
	0000 00000	Higher limit of measuring range	1000	
HIGH	-9999 ~ 99999	(see Note 2 for decimal digit setting)	1000	
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0	
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1000	
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0	
	ON: oursulation	If the channel is used for flow signal, CUMULATE		
CUMULATE	ON: cumulation	can be set ON, and flow value will be cumulated. If	OFF	
		set OFF, will not be cumulated.		
INPUT	03	The third input channel (unchangeable)	03	
TYPE	See table of input types	Input signal type (see table of input signal types)	4-20mA	
UNIT	See table of units	Engineering unit of input channel (see Note 1)	KPa	
FILTER	0-19	Set the input signal filter coefficient	0	
	0000 00000	Lower limit of measuring range	0.000	
LOW	-9999 ~ 99999	(see Note 2 for decimal digit setting)	0.000	
шен	0000 ~ 00000	Higher limit of measuring range	1 000	
пібп	-9999 ~ 99999	(see Note 2 for decimal digit setting)	1.000	
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0.000	
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1.000	
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0	
CUMULATE ON: cumulation If the channel is used for flow signal, 0		If the channel is used for flow signal, CUMULATE	OFF	

OFF: no cumulation	can be set ON, and flow value will be cumulated. If	
	set OFF, will not be cumulated.	

No.	0	1	2	3	4	5	6	7	8	9	10	11	12
Unit	°C	Kgf	Ра	KPa	MPa	mmHg	mmH2O	bar	Kg/h	Kg/m	Kg/s	t/h	t/m
No.	13	14	15	16	17	18	19	20	21	22	23	24	25
Unit	t/s	l/h	l/m	l/s	m³/h	m³/m	m³/s	Nm³/h	Nm³/m	Nm³/s	KJ/h	KJ/m	KJ/s
No.	26	27	28	29	30	31	32	33	34	35	36	37	38
Unit	MJ/h	MJ/m	MJ/s	GJ/h	GJ/m	GJ/s	kg	t	L	m ³	Nm ³	KJ	MJ
No.	39	40	41	42	43	44	45	46	47	48	49	50	
Unit	GJ	m	m/s	V	KV	А	KA	KW	HZ	%	PH	mm	

Note 1: Table of Unit (if special unit is required, it should be specified in the order.)

Note 2: decimal digit setting: if it's required to display value with decimal places in the setting of measuring range, press "*O*" and "*4*" to move the decimal place from right to left.

When the point moves to the first decimal place in the right, it will display value with one decimal place, and when the point moves to the second, it will display value with two decimal places.

For example, if upper limit of measuring range is set as "1.0", the instrument will display "1.0", and if it's set as "1.00", the instrument will display "1.00". Number of decimal places of upper limit of measuring range shall be set first, and that of lower limit will follow the same rule as upper limit.

Negative range setting: move the cursor to the first place in the left, and press " $\mathbf{\nabla}$ " so that the instrument will display "0", and then press " $\mathbf{\nabla}$ " again – the negative mark "-"will be displayed.

Note 3: Small signal cutoff: if the measured value < (upper limit of measuring range – lower limit of measuring range)* small signal cutoff percentage + lower limit of measuring range, the measured value will be displayed as lower limit of measuring range. (This function only serves voltage and current signals; for frequency signal, its engineering value will be cut off.)

Name	Range	Description	Default Value
ALM-CHAN	01	The first alarm channel(unchangeable)	01
	1 – the 1st input channel		
	2 – the 2nd input channel		
	3 – the 3rd input channel	Input channel (1 – 6) corresponding to the alarm	05
INPUT	4 – the 4th input channel	channel	05
	5 –flow		
	6 –heat		
	NO: no alarm		
	AL: Low alarm		
	AH: High alarm		
	SAL: reserved	Alarm type	
	SAH: reserved	Note: when the alarm type is set as LAL, LAH,	
ALIVI-ITFE	LAL: Low cumulation alarm	LALC or LAHC, the input channel must be set	АП
	LAH: High cumulation alarm	flow or heat	
	LALC: Low cumulation alarm and		
	clear cumulation		
	LAHC: High cumulation alarm and		

2) "ALM" parameters

	clear cumulation		
THRESHLD	THRESHLD-9999 ~ 99999Set the alarm threshold value (see Note 4)		
HYSTERES	0 ~ 99999	Set the alarm threshold hysteresis, which can prevent signal oscillation near the alarm threshold.	00
ALM-CHAN	02	The 2nd alarm channel(unchangeable)	02
INPUT	Same as above	Input channel (1 – 6) corresponding to the alarm channel	05
ALM-TYPE	Same as above	Alarm type Note: when the alarm type is set as LAL, LAH, LALC or LAHC, the input channel must be set flow or heat	АН
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
HYSTERES	0 ~ 99999	Set the alarm threshold hysteresis, which can prevent signal oscillation near the alarm threshold.	00

Note 4: Alarm mode: (Alarm threshold hysteresis can prevent signal oscillation near the alarm threshold, frequent alarms and cancellation of report)

Output status:

★ Signal value increases from a low value:

Lower-limit set value (AL2)

★ Signal value decreases from a high value:

Upper-limit return difference value (AH1)

★ High alarm output:

★ Low alarm output:

3) "OUTt" parameters

Name	Range	Description	Default Value	
OUT-CHAN	01	The 1st output channel(unchangeable)	01	
	1 – the 1st input channel			
	2 – the 2nd input channel			
	3 – the 3rd input channel	Input channel (1 - 6) corresponding to the	05	
INFUT	4 – the 4th input channel	analog output channel	05	
	5 –flow			
	6 –heat			
	No: no output	Signal output type of transmission (any		
OUT-TYPE	Current: 0~20mA, 0~10mA, 4~20mA	special requirement shall be specified)	4~20mA	
	Voltage: 0~5V, 1~5V, 0~10V	special requirement shall be specified)		
OUT-LOW	-9999 ~ 99999	The lowest signal value of transmission	0	
OUT-HIGH	-9999 ~ 99999	The highest signal value of transmission	1000	
OUT-CHAN	02	The 2nd output channel(unchangeable)	02	
	Same as above	Input channel (1 - 6) corresponding to the	05	
INFUT	Same as above	analog output channel	05	
	Same as above	Signal output type of transmission (any	4~20m∆	
OUI-TIFE	Same as above	special requirement shall be specified)	4~20MA	
OUT-LOW	-9999 ~ 99999	The lowest signal value of transmission	0	
OUT-HIGH	-9999 ~ 99999	The highest signal value of transmission	1000	

4) "DEV" parameters

When some of following parameters marked with "*", it means no setting is required.

Name	Range	Description	Default Value
	Flange pressure plate,	Primary measuring devices such as orifice plate	actual condition
DEVICE	linear flow meter, etc.	and vortex street are used (Note 1)	
С	0~ 999999	Discharge coefficient	actual condition
ε	0~ 999999	Expansion factor	actual condition
TUBE	A3 steel, Cr6SiMo, etc.	The material used to manufacture pipes, and different materials have different expansion coefficient λ_{D} (Note 2)	actual condition
THROTTLE	A3 steel, Cr6SiMo, etc.	The material used to manufacture throttling parts(orifice plate, etc.), and different materials have different expansion coefficient λ_{d} (Note 2)	actual condition
D20	0 – 999999	The pipe diameter D20 at 20 $^\circ\!\!\mathrm{C}$ (in mm)	actual condition
d20	0 – 999999	Throttling piece diameter d20 at 20 $^\circ\!\!\!{\rm C}$ (in mm)	actual condition
λ D 0 – 999999		Linear expansion coefficient of tube material – λ_{D} (in 10 ⁻⁶ mm/(mm. [°] C))	actual condition

λ _d	0 – 999999	Linear expansion coefficient of throttling piece material – λ d (in 10 ⁻⁶ mm/(mm.°C))	actual condition
SQRT	YES/NO	YES: When differential pressure transmitter has no square root computation, and the instrument needs to do this for differential pressure signal. NO: When differential pressure transmitter has square root computation	YES
SEGMENTS	1 – 8	For measuring devices of other flow meters of differential pressure type or frequency-type vortex street flow meter, K coefficient may be divided into several segments (at maximum of 8 segments)	8
RANGE1	0 – 999999	K=K1, when : 0 ≤ differential pressure or frequency ≤ RANGE1	100
K1	0 – 999999	K1 coefficient	1
RANGE2	0 – 999999	K=K2, when : RANGE1 ≤ differential pressure or frequency ≤ RANGE2	100
K2	0 – 999999	K2 coefficient	1
RANGE3	0 – 999999	K=K3, when : RANGE2 \leq differential pressure or frequency \leq RANGE3	100
К3	0 – 999999	K3 coefficient	1
RANGE4	0 – 999999	K=K4, when : RANGE3 ≤ differential pressure or frequency ≤ RANGE4	100
K4	0 – 999999	K4 coefficient	1
RANGE5	0 – 999999	K=K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5	100
K5	0 – 999999	K5 coefficient	1
RANGE6	0 – 999999	K=K6, when : RANGE5 ≤ differential pressure or frequency ≤ RANGE6	100
K6	0 – 999999	K6 coefficient	1
RANGE7	0 – 999999	K=K7, when : RANGE6 ≤ differential pressure or frequency ≤ RANGE7	100
K7	0 – 999999	K7 coefficient	1
RANGE8	0 – 999999	K=K8, when : RANGE7 ≤ differential pressure or frequency ≤ RANGE8	100
K8	0 – 999999	K8 coefficient	1

Note 1: Primary instrument devices

Flange pressure plate Angle pressure plate D and D/2 pressure plate ISA932 nozzle Long diameter nozzle Venturi nozzle

V-cone flow meter

Other differential pressure flow meter

Frequency-type vortex flow meter

Machined classical Venturi tube

Thick iron wielding section of Venturi tube

Linear flow meter

Casting-type Venturi tube

Note 2: Tube or Throttle materials

15 steel, A3 steel	Cr6SiMo
A3F, B3 steel	X20CrMoWV121
10 steel	1Cr18Ni9Ti
20 steel	Ordinary carbon steel
45 steel	Industrial copper
1Cr13, 2Cr13	Copper
1Cr17	brass
12CrlMoV	Grey cast iron
10CrMo910	User-defined

5) "MED" parameters

When some of following parameters marked with "*", it means no setting is required.

Name	Range	Description	Preset Value		
MEDIUM	Steam water etc	Flow medium to be measured, such as steam, water, and gas	actual condition		
		(Note 1)			
		Local atmospheric pressure PA (in MPa). If the pressure			
PRESSURE	-9999.9 ~ 999999	compensation channel is absolute pressure, the atmospheric	0.10133		
		pressure should be set 0.			
то	0°C or 20°C	Standard conditions temperature, T0 = 0 $^\circ$ C or 20 $^\circ$ C;	າດຳ		
10	0001200	Standard conditions Pressure, P0 = 0.10133Mpa.	20 C		
_ 0	0 000000	Density of medium in standard condition (in Kg/m3). It needs to	actual condition		
рU	0~999999	be set if the medium is other gas or liquid.			
HUMID	0 – 100	Relative humidity of humid gas (in %)	0		
HUMID0	0 – 100	Under standard condition of humid gas (in %)	0		
DRYNESS	0 – 100	Dryness of saturated steam (in %)	100		
		Compressibility factor of gas in operating condition			
Z	0 ~ 999999	(dimensionless); This parameter needs to be set if the	actual condition		
		measured medium is other gas.			
		Isentropic exponent of medium κ (dimensionless); this			
	0 ~ 999999	parameter needs to be set if the measuring device is throttling			
к		device of varied flow meters of differential pressure type	actual condition		
		(except V-cone flow meter) and the medium is other gas or			
		liquid.			
		Dynamic viscosity of medium μ (in Pa.s); this parameter needs			
	0 000000	to be set if the measuring device is throttling device of varied	actual condition		
μ	0~999999	flow meters of differential pressure type (except V-cone flow			
		meter) and the medium is other gas or liquid.			
	0000 0 000000	Monomial coefficient of quadratic polynomial of liquid	1		
AI	-9999.9 ~ 999999	temperature compensation; see liquid density formula.	I		
٨٥		Quadratic coefficient of quadratic polynomial of liquid	1		
AZ	-3999.9 ~ 999999	temperature compensation; see liquid density formula.	1		
The following parameters will be applicable only when the medium is manufactured gas.					

Air	0 ~ 100.00	Air percent by volume (%)	actual condition
N ₂	0 ~ 100.00	Nitrogen percent by volume (%)	actual condition
O ₂	0 ~ 100.00	Oxygen percent by volume (%)	actual condition
He	0 ~ 100.00	Helium percent by volume (%)	actual condition
H ₂	0 ~ 100.00	Hydrogen percent by volume (%)	actual condition
Ar	0 ~ 100.00	Argon percent by volume (%)	actual condition
СО	0 ~ 100.00	Carbon monoxide percent by volume (%)	actual condition
CO ₂	0 ~ 100.00	Carbon dioxide percent by volume (%)	actual condition
H₂S	0 ~ 100.00	Sulfureted hydrogen percent by volume (%)	actual condition
NH ₃	0 ~ 100.00	Ammonia percent by volume (%)	actual condition
CH4	0 ~ 100.00	Methane percent by volume (%)	actual condition
C ₂ H ₆	0 ~ 100.00	Ethane percent by volume (%)	actual condition
C ₃ H ₈	0 ~ 100.00	Propane percent by volume (%)	actual condition
C ₄ H ₁₀	0 ~ 100.00	Butane percent by volume (%)	actual condition
C ₂ H ₄	0 ~ 100.00	Ethylene percent by volume (%)	actual condition
C ₃ H ₆	0 ~ 100.00	Propylene percent by volume (%)	actual condition
C ₄ H ₈	0 ~ 100.00	Butylene percent by volume (%)	actual condition
C ₂ H ₂	0 ~ 100.00	Ethyne percent by volume (%)	actual condition
		Sum of percent by volume of above 18 components, which	
SUM	0~100.00	would be calculated automatically by the instrument and	actual condition
50111	0~100.00	unchangeable. The sum of percent by volume shall be:	actual condition
		100±0.01%	

Note 1: Flow medium:

Saturated steam temperature compensation	H2	C4H10
Saturated steam pressure compensation	Ar	C2H4
Steam	CO	C3H6
0.6Mpa water	CO2	C4H8
1.6Mpa water	H2S	C2H2
Air	NH3	Other gas
N2	CH4	Liquid
O2	C2H6	Manufactured gas
Не	C3H8	

6) "TRD" parameters

Name	Range	Description	Preset Value
F-UNIT	Kg/h, Kg/m, etc.	Select flow unit (Note 1)	Kg/h
H-UNIT	KJ/h, KJ/m, etc.	Select heat unit (Note 2)	MJ/h
LOW-THR	0 ~ 999999	Low Threshold Value, See Note 3	0
LOW-VAL	0 ~ 999999	Small Flow Value, See Note 3	0
OVER-THR	0 ~ 999999	Over Threshold Value, See Note 3	100
OVER-MUL	0 ~ 999999	Over coefficient(dimensionless), See Note 3	0
ACCU-MUL	0 ~ 999999	Accumulation multiple rate(dimensionless), See Note 3	1

F-COMP	0 ~ 999999	Flow compensation during power down(see Note 5)	0
H-COMP	0 ~ 9999999 Heat compensation during power down(see Note 5)		0
CONST-P	0 ~ 999999	Constant Pressure when pressure signal cut off	1
CONST-T	0 ~ 999999	Constant Temperature when temperature signal cut off	20
F-DIGIT	0~5	Maximum decimal digit of instantaneous flow (0 – 5 decimal digit)	3
H-DIGIT	0~5	Maximum decimal digit of instantaneous heat $(0 - 5$ decimal digit)	3
к	0 ~ 999999	Adjustment of instantaneous flow Kx+b, where K means proportional factor	1.00000
В	0 ~ 999999	Adjustment of instantaneous flow Kx+b, where B means constant factor	0.0
F-RANGE	0 ~ 999999	Measuring range of instantaneous flow, which is only used for display on computer and transmission.	2000.0
H-RANGE	0 ~ 999999	Measuring range of instantaneous heat, which is only used for display on computer and transmission.	2000.0

Note 1: the following units of instantaneous flow are available:

Kg/h, kg/m, kg/s, t/h, t/m, t/s, l/h, l/m, l/s, m³/h, m³/m, m³/s, Nm³/h, Nm³/m, Nm³/s

Note 2: the following units of instantaneous heat are available:

KJ/h, KJ/m, KJ/s, MJ/h, MJ/m, MJ/s, GJ/h, GJ/m, GJ/s

Note 3: calculation of cumulative flow:

If instantaneous flow < Low Threshold Value, Cumulative flow = Previous cumulative flow + Small Flow Value;

If Low Threshold Value \leq instantaneous flow \leq Over Threshold Value, Cumulative flow = Previous cumulative flow + instantaneous flow;

If instantaneous flow > Over Threshold Value, Cumulative flow = Previous cumulative flow + Over coefficient * (instantaneous flow – Over Threshold Value) + Over Threshold Value.

Note 4: Cumulative flow = Previous cumulative flow + Accumulation multiple rate * instantaneous flow.

Cumulative heat = Previous cumulative heat + Accumulation multiple rate * instantaneous heat.

Note 5: Complementary Cumulative Flow = Flow compensation during power down * duration of power down; Complementary Cumulative Heat = Heat compensation during power down * duration of power down;

7) "ADJ"	parameters
----------	------------

Name	Range	Description	Default Value
INPUT	01	01 The 1st input channel (unchangeable)	
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional	1
		factor	
INPUT	02	The 2nd input channel (unchangeable)	02
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1

INPUT	03	The 3rd input channel (unchangeable)	03
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
INPUT	04	The 4th input channel (unchangeable)	04
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	01	The 1st output channel (unchangeable)	01
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	02	The 2nd output channel (unchangeable)	02
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	03	The 3rd output channel (unchangeable)	03
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
к	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	04	The 4th output channel (unchangeable)	04
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1

8) "SYS" parameters

Name	Range	Description	Default Value
DATE	Y-M-D	Current date, year-month-day	Current date
TIME	H-M-S	Current time, hour-minute-second	Current time
	00000 - 000000	Cold junction compensation KX+B, where	
СЈС-В	-99999 ~ 999999	B is constant factor	0
	00000 - 000000	Cold junction compensation KX+B, where	1
CJC-K	-99999 ~ 999999	K is proportional factor	I
ADDRESS	1 ~ 255	Instrument address of communication	1
BAUD	1200/2400/4800/9600 bps	Baud rate of the serial communication	9600
		Printing mode:	AS
		NO: no printing function	
	NO, AS, TS	AS: when manual printing data, it will print	
PRINTER		measured value of selected channel within	
		the set time;	
		TS: when manual printing data, it will print	
		measured value of all channels at current	
		time	

PRT-INTR	1- 2000 minutes	The interval time of equal-interval print	1 (minute)	
PRT-STRT	H-M	Start time of equal-interval print	00:00	
		ON: print when new alarm occur	OFF	
ALIVI-PRI	ON/OFF	OFF: no print when new alarm occur		
REC-INTR	1/2/4/6/15/30/60/120/240s	Record interval time	1 second	
	00: CH01, Channel 1			
	01: TEMP, Temperature			
	02: PRES, Pressure			
CH1-NAME	03: FLOW	Channel name of the 1st input channel	4	
	04: DP, Differential Pressure			
	05: TIN, Inlet Temperature			
	06: TOUT, Outlet Temperature			
	07: blank			
CH2-NAME	Same as above	Channel name of the 2nd input channel	1	
CH3-NAME	Same as above	Channel name of the 3rd input channel	2	
CH4-NAME	Same as above	Channel name of the 4th input channel	4	
	ON: automatic page switch			
AUT-PAGE	(interval of about 10s)	Page switch option: automatic/manual	OFF	
	OFF: manual page switch (press	page switch		
	F1)			
		U - Diank		
	Dago 1 has 1 lines, its content is	2 – measured value of signal channel 2		
	defined by the following 4 bits:	4 – measured value of signal channel 4		
	$10 \times 1 \times 2 \times 3 \times 4^{-1}$	5 - instantaneous flow		
PAGE1	X1: 1st line content	6 – instantaneous heat	User-defined	
I NOLI	X2: 2nd line content	7 – instantaneous cold		
	X3: 3rd line content	8 - cumulative flow		
	X4: 4th line content	9 – cumulative heat		
		A – cumulative flow of channel 2		
		B – cumulative flow of channel 3		
		C – cumulative flow of channel 4		
		D – user balance		
		E – residual flow subscribed		
	Page 1 has 4 lines, its content is			
	defined by the following 4 bits:			
	2 0 X1 X2 X3 X4:			
PAGE2	X1: 1st line content	Same as above	User-defined	
	X2: 2nd line content			
	X3: 3rd line content			
	X4: 4th line content			

PWR-PAGE	ON: Display of Power On/Down page is ON; OFF: Display of Power On/Down page is OFF	The last 8 power on/off time will be recorded in flow meter.	OFF
REPORT	ON: Display of hourly report, shift report, daily report, and monthly report pages are ON; OFF: the above pages are OFF	The instrument is capable of compiling hourly report, shift report, daily report, and monthly report. All reports can be inquired by turning on the "REPORT"	OFF
PASSWORD	To set supplier password and customer password		
CLEAR	Yes: to clear all reports; No: not to clear all reports;	Press " O", and a window for choosing to or not to clear reports will pop up. Use " I" and " I" to move the cursor on proper option, and press " O" for confirmation.	

9) "SHF" parameters

Name	Range	Description	Default Value
SHIFTS	1~3	Number of shifts counted in one day, reports of 3 shifts may be made at maximum for one day.	3
SHF1-ST	00:00 ~ 23:30	Start time of shift 1 (H:M), which may be H:00 or H:30	00:00
SHF1-END	00:00 ~ 23:30	End time of shift 1 (H:M), which may be H:00 or H:30	08:00
SHF2-ST	00:00 ~ 23:30	Start time of shift 2 (H:M), which may be H:00 or H:30	08:00
SHF2-END	00:00 ~ 23:30	End time of shift 2 (H:M), which may be H:00 or H:30	16:00
SHF3-ST	00:00 ~ 23:30	Start time of shift 3 (H:M), which may be H:00 or H:30	16:00
SHF3-END	00:00 ~ 23:30	End time of shift 3 (H:M), which may be H:00 or H:30	00:00

10) "PAY" parameters

Name	Range	Description	Default Value
		Time-division charge, which can be divided to peak	ON
		period, valley period, and normal period.	
PEAK-ST	00:00 ~ 23:30	Start time of peak period	00:00
PEAK-END	00:00 ~ 23:30	End time of peak period	00:00
VALL-ST	00:00 ~ 23:30	Start time of valley period	00:00
VALL-END	00:00 ~ 23:30	End time of valley period	00:00
PEAK-FEE	0 – 999999	Flow unit price in peak period (RMB)	0
VALL-FEE	0 – 999999	Flow unit price in valley period (RMB)	0
NORM-FEE	0 – 999999	Flow unit price in normal period (RMB)	0
		Remain quantitative control, if activated, the 4 th alarm	
REM-CTRL	ON/OFF	contact will be used. The 4th contact will be ON when	OFF
		there is no remain quantitative, or it is OFF.	
		The flow purchased by user (RMB Yuan)	
CHARGE	-99999 ~ 999999	If it's a positive value, the "BALANCE" will increase; if it's	0
		a negative value, the "BALANCE" will decrease.	

BALANCE 0 ~ 9999999 TI	The balance of flow charge (RMB Yuan)	0
------------------------	---------------------------------------	---

11) "CON" parameters

Name	Range	Description	Default Value
CONTROL	ON/OFF	The 4th alarm contact will be used when CONTROL is ON.	OFF
TRIGGER	MAN/AUTO	 "MAN": Before triggered, the 4th alarm contact remain its status. When triggered, alarm contact's status depends on GOT-OUT. "AUTO": The 4th Alarm contact's status depends on GOT-OUT. 	MAN
GOT-OUT	OFF/ON	"OFF": When this accumulation got CTRL-VAL, the 4 th alarm contact will be OFF, otherwise it is ON. "ON": When this accumulation got CTRL-VAL, the 4 th alarm contact will be ON, otherwise it is OFF.	ON
AUTO-CLR	ON/OFF	ON : When this accumulation got CTRL-VAL, this accumulation will be cleared automatically. AUTO-CLR works only if TRIGGER is AUTO.	OFF
CTRL-VAL	0—— 999999	Control Value	100
ADVANCE	0—— 999999	Actually control will work if (this accumulation >= CTRL-VAL – ADVANCE).	0

VII. Communication Setting

The instrument is capable of communication with master computer which may complete parameters setting, data collection, and monitoring of slave computer. Combined with industrial computer software, dynamic display, instrument data setting, graph generation, data storage, and printing can be realized in Chinese Windows system. Real-time data and curves collection as well as historical data and curves recording can also be achieved with our master computer management software, where historical data and curves can be exported to be Excel files for processing.

Communication: RS-485/RS-232 serial interface communication, baud rate between 1200 and 9600bps for choice;

Data format: 1 start bit, 8 data bits, 1 stop bit (see details in CD) Wiring method:

VIII. Calculation

1. Mass flow expression

1.1 Mass flow expression for standard throttling device

Where: q_m: mass flow (Kg/h)

C: Discharge coefficient (dimensionless)

B: diameter ratio (dimensionless)

ε: expansion coefficient (dimensionless)

d: Throttling piece diameter (m)

 $\triangle P$: differential pressure (Pa)

ρ: medium density in operating condition (Kg/m³)

In formula (1) above, β will be calculated below:

D: The pipe diameter (m)

In formula (2) above, d and D will be calculated below:

$$d = d_{20} [1 + \lambda_d (t - 20)] \qquad(3)$$

Where: d_{20} : throttling piece diameter at 20 $^\circ\!\mathrm{C}$ (m)

 d_{20} : the pipe diameter at 20 $^{\circ}$ C (m)

 $\lambda_{\text{ d}}$: linear expansion coefficient of orifice plate material (10^-6/ $\!\!\!^\circ C$)

 λ _D: linear expansion coefficient of tube material (10-6/ $^{\circ}\mathrm{C}$)

t: operating temperature (°C)

In formula (1) above, ε and C will be calculated according to GB/T2624-2006 "Measurement of Fluid Flow by means of pressure differential devices inserted in circular cross-section conduits running full". Formula (1) applies to mass flow of the following measuring devices: Flange pressure plate, Machined classical Venturi tube, Angle pressure plate, Thick iron wielding section of Venturi tube, D and D/2 pressure plate, V-cone flow meter, ISA932 nozzle, Long diameter nozzle, Venturi nozzle, Casting-type Venturi tube.

1.2 Mass flow expression for V-cone flow meter

In formula (1) above, β will be calculated below:

1.3 Simplified mass flow expression for throttling device

Where: q_m: mass flow (Kg/h)

 $\triangle P$: differential pressure (Pa)

ρ: medium density in operating condition (Kg/m³)

K: instrument coefficient

Formula (8) is a simplified expression derived from formula (1) where all coefficients are taken as constants, which applies to ther flow meter of differential pressure type. As instrument coefficient K is possibly not an invariable constant, K may be divided into 8 segments for segmented calculation to higher precision.

1.4 Mass flow expression for frequency-type flow meter such as vortex

$$q_m = \frac{3.6}{K} \times \rho \times f \qquad \dots \qquad (9)$$

Where: qm: mass flow (Kg/h)

K: flow coefficient of vortex flow meter (pulse/L)

ρ: medium density in operating condition (Kg/m³);

f: frequency of signal sent by vortex flow meter (Hz)

As flow coefficient K is possibly not an invariable constant, K may be divided into 8 segments for segmented calculation to higher precision.

Formula (9) applies to frequency-type flow meter such as vortex.

1.5 Mass flow expression for linear volumetric flow meter

$$q_m = \rho \times q$$
(10)

Where: q_m : mass flow (Kg/h);

q : volumetric flow measured by linear flow meter (m³/h);

 ρ : medium density in operating condition (Kg/m³);

Formula (10) applies to measuring device of linear flow meter.

2. Volumetric flow expression

Volumetric flow in operating conditions:

Volumetric flow in standard condition:

Where: q_v : volumetric flow in operating condition (m³/h)

q_{vN} : volumetric flow in standard condition (Nm³/h);

q_m : mass flow (Kg/h);

 ρ : medium density in operating condition (Kg/m³);

 ρ_N : medium density in standard condition (Kg/m³);

Standard condition means temperature of 20 $^\circ \rm C$ or 0 $^\circ \rm C$ (subject to user's choice) and atmospheric pressure of 0.10133MPa.

3. Density compensation formula

3.1 Gas density compensation formula

Dry gas density compensation formula:

Density compensation formula for dry part of humid gas:

Where: p : medium density in operating condition

 ρ_N : medium density in standard condition (Kg/m³);

P: absolute pressure in operating condition (MPa);

T : absolute temperature in operating condition (T);

 P_N : absolute pressure in standard condition (0.10133MPa);

T_N : absolute temperature in standard condition (273.15K or 293.15K);

Z : compressibility factor in operating condition (dimensionless);

 Z_N : compressibility factor in standard condition (dimensionless);

 ϕ : relative humidity in operating condition (%);

 $P_{s max}$: saturated steam pressure in operating condition (MPa) Compressibility factor Z could be solved by Redlich-Kwong equation:

Where: *P*_c means critical pressure of gas (MPa);

T_c means critical temperature of gas (K)

3.2 Water and steam density formula

Steam density may be solved by IAPWS-IF97 formula based on measured pressure and temperature.

Saturated steam dryness compensation formula:

$$v = xv_g + (1 - x)v_f$$
(16)

Where: v : specific volume of humid saturated steam (m³/Kg);

v_g : specific volume of saturated steam (m³/Kg);

v_f : specific volume of water (m³/Kg);

x : dryness (%);

Water density may be solved in real time IAPWS-IF97 formula based on measured temperature and input atmospheric pressure.

3.3 Liquid density formula

Liquid (e.g. petroleum and diesel oil) density will be solved by formula below:

Where: ρ : liquid density in operating condition (Kg/m³);

 ρ_N : liquid density in standard condition (Kg/m³);

 t_N : temperature in standard condition (°C);

t : temperature in operating condition ($^{\circ}$ C);

A1: monomial coefficient of quadratic polynomial (dimensionless);

A₂ : quadratic coefficient of quadratic polynomial (dimensionless);

3.4 Heat expression

Steam heat expression:

$$Q = q_m \times h$$
(19)

Where: Q: instantaneous heat (KJ/h);

q_m: mass flow (Kg/h);

h: enthalpy (KJ/Kg);

Steam enthalpy *h* will be calculated in real time by IAPWS-IF97 formula.

3.5 Heat expression for hot water

Heat expression for hot water:

$$Q = q_m \times (h_{\text{ inlet temperature }} - h_{\text{ outlet temperature }})$$
(20)

Where: Q means instantaneous heat (KJ/h);

qm means mass flow (Kg/h);

 $h_{\text{ inlet temperature }}$: enthalpy of hot water at the inlet (KJ/Kg);

 $h_{\text{outlet temperature}}$: enthalpy of hot water at the outlet (KJ/Kg);

Hot water enthalpy *h* may be calculated in real time by IAPWS-IF97 formula.

IX. Example

Example 1: measuring mass flow of superheated steam with orifice plate with corner taps

It's known that:

Tube material: #45 steel

Throttling element material: 1Cr18Ni9Ti

Tube caliber: 441.20mm

Throttling element caliber: 313.71mm

Atmospheric pressure: 0.10133Mpa

Differential pressure sensor: 4~20mA differential pressure transducer (two-wire system), measuring range: 0.00 ~ 60.00Kpa (no extraction);

Pressure sensor: 4~20mA pressure transducer (two-wire system), measuring

range: 0.00 ~ 3.00Mpa;

Temperature sensor: PT100

• Validation parameters

Differential pressure sensor: 14mA

Pressure sensor: 12mA

Temperature sensor: 200Ω

• Parameters setting:

Item		Content	
Measuring device in "Device" configuration		V02: orifice plate with corner taps	
Tube material in "Device" configuration		C05: #45 steel	
Throttling element material in "Device" configuration		C12: 1Cr18Ni9Ti	
Tube caliber in "Device" configuration		441.20mm	
Throttling element caliber in "Device" configuration		313.71mm	
Measured medium in "Medium" configuration		F03: steam	
Atmospheric pressure in "Medium" configuration		0.10133Mpa	
Differential pressure signal	Input channel	01	
	Input type	4 ~ 20mA	
	Input unit	Кра	
	Upper/lower limit of measuring range	0.00 ~ 60.00	
Temperature signal	Input channel	02	
	Input type	PT100	
	Input unit	°C	
	Upper/lower limit of measuring range	0.0 ~ 650.0	
Pressure signal	Input channel	03	
	Input type	4 ~ 20mA	
	Input unit	Мра	
	Upper/lower limit of measuring range	0.00 ~ 3.00	

• Formula:

$$q_m = \frac{C}{\sqrt{1 - \beta^4}} \varepsilon \frac{\pi}{4} d^2 \sqrt{2\Delta P \times \rho} \times 3600$$

• Displayed result:

DF	37.49	KPa
TEMP	266.7	°C
PRES	1.50	MPa
InsF	137685	Kg/h

Example 2: measuring mass flow of superheated steam by vortex street (frequency) flow meter with pressure and temperature

• It's known that:

Atmospheric pressure: 0.10133Mpa

Vortex street sensor: 12V distributed power; frequency 0 ~ 2000Hz; coefficient K =500times/L Pressure sensor: 4~20mA pressure transducer (two-wire system) for power distribution; measuring range: 0.00 ~ 1.00Mpa.

Temperature sensor: PT100

- Validation parameters
- Vortex street sensor: 2000Hz
- Pressure sensor: 16mA

Temperature sensor: 175.84Ω

• Parameters setting:

	Item	Content
Measuring device in "Device" configuration		V12: frequency-type vortex street flow
		meter
Coefficient segment in '	'Device" configuration	1
Segment 1 end point in	"Device" configuration	1000
Coefficient K1 in "Devic	e" configuration	500
Measured medium in "N	Medium" configuration	F03: steam
Atmospheric pressure i	n "Medium" configuration	0.10133Mpa
Differential pressure	Input channel	01
signal	Input type	4 ~ 20mA
	Input unit	Кра
	Upper/lower limit of measuring range	0 ~ 2000
Temperature signal	Input channel	02
	Input type	PT100
	Input unit	°C
	Upper/lower limit of measuring range	0.0 ~ 6500.0
Pressure signal	Input channel	03
	Input type	4 ~ 20mA
	Input unit	Мра
	Upper/lower limit of measuring range	0.00 ~ 1.00

• Formula:

$$q_m = \frac{3.6}{K} \times \rho \times f$$

• Displayed result:

DF	2000	Hz
TEMP	200.0	°C
PRES	0.75	MPa
InsF	58.9340	Kg/h

SMERI s.r.l.

Via Mario Idiomi, 3/13 I - 20057 Assago (MI) Tel. +39 02 539 8941 E-mail smeri@smeri.com www.smeri-international.com

